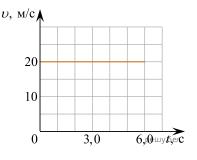

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида (1.4 ± 0.2) Н записывайте следующим образом: 1.40.2.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. На рисунке представлен график зависимости координаты x тела, движущегося вдоль оси Ox, от времени t. Тело находилось в движении только в течение промежутка(-ов) времени:


1) (0; 4) c 2) (1; 4) c

3) (0; 2) c, (4; 6) c

4) (1; 6) c

5) (1; 4) c, (5; 6) c

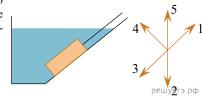
2. График зависимости модуля скорости υ тела от вре- υ , м/с мени t изображён на рисунке. Путь s, пройденный телом за промежуток времени $\Delta t = 3.0$ с, равен:

1) 10 m:

2) 20 m; 3) 60 m:

4) 120 m:

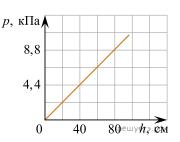
5) 140 m.


3. Подъемный кран движется равномерно в горизонтальном направлении со скоростью, модуль которой относительно поверхности Земли v = 30 см/с, и одновременно поднимает вертикально груз со скоростью, модуль которой относительно стрелы крана u = 40 см/с. Модуль перемещения Δr груза относительно поверхности Земли за промежуток времени $\Delta t = 0.80$ мин равен:

1) 15 м 2) 24 M 3) 35 м 4) 40 M 5) 45 M

4. К телу приложены силы \vec{F}_1 и \vec{F}_2 , лежащие в плоскости рисунка. Направления сил изменяются, но их модули остаются постоянными. Наибольшее ускорение a тело приобретет в ситуации. обозначенной на рисунке цифрой:

5. Со дна водоёма с помощью троса равномерно поднимают каменную плиту (см. рис.). Направление силы тяжести, действующей на плиту, показано стрелкой, обозначенной цифрой:



1) 1 2)2

3)3

5)5

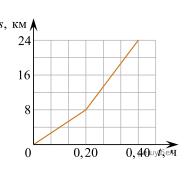
6. На рисунке изображён график зависимости гидростатического давления p от глубины h для жидкости, плот- p, к Π а ность о которой равна:

1) 1,2 $\frac{\Gamma}{\text{cM}^3}$ 2) 1,1 $\frac{\Gamma}{\text{cM}^3}$ 3) 1,0 $\frac{\Gamma}{\text{cM}^3}$ 4) 0,90 $\frac{\Gamma}{\text{cM}^3}$

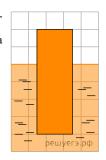
7. Во время процесса, проводимого с одним молем идеального одноатомного газа, измерялись макропараметры состояния газа:

Измерение	Температура, К	Давление, кПа	Объем, л
1	290	161	15
2	310	172	15
3	330	183	15
4	350	194	15
5	370	205	15

Такая закономерность характерна для процесса:

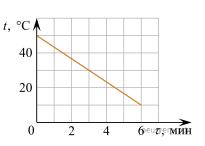

- 1) адиабатного
- 2) изобарного
- ного 3) изотермического 5) циклического
- 4) изохорного
- **8.** При изобарном нагревании идеального газа, количество вещества которого постоянно, объем газа увеличился в k=1,40 раза. Если температура газа возросла на $\Delta t=120$ K,то начальная температура T_1 газа была равна:
 - 1) 27,0 K
- 2) 150 K
- 3) 300 K
- 4) 360 K
- 5) 450 K
- **9.** Если при переходе атома водорода из одного стационарного состояния в другое был испущен квант электромагнитного излучения с длиной волны $\lambda = 1,22 \cdot 10^{-7} \, \mathrm{m}$, то модуль разности энергий $|\Delta E|$ атома водорода в этих стационарных состояниях равен:
 - 1) 13,6 ₉B;
- 2) 10,2 ₉B;
- 3) 8,10 ₉B;
 - 4) 4,60 ₃B;
- 5) 3,40 ₉B.
- 10. В паспорте стиральной машины приведены следующие технические характеристики:
- 1) 220—230 В; 2) 1,33 кВт · ч;
- 3) 2100 Bt; 4) $(50 \pm 1) \Gamma_{II}$;
- 5) (0,05—1) MΠa.

Параметр, характеризующий давление в водопроводной сети, указан в строке, номер которой:

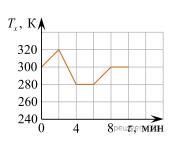

- 1) 1
- 3
- 5) 5

11.

На рисунке представлен график зависимости пути s от времени t движения автобуса на двух различных участках дороги. Средняя скорость υ движения автобуса на всём пути равна ... $\frac{\mathrm{KM}}{\mathtt{u}}$.

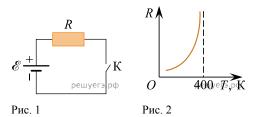


- 12. К бруску, находящемуся на гладкой горизонтальной поверхности, прикреплена невесомая пружина жесткостью k=20 Н/м. Свободный конец пружины тянут в горизонтальном направлении так, что длина пружины остается постоянной (l=140 мм). Если длина пружины в недеформированном состоянии $l_0=100$ мм, а модуль ускорения бруска a=1,25 м/с 2 , то масса m бруска равна ... r.
- 13. Цилиндр плавает в керосине $ho_{\rm K}=800~{{\rm K}\Gamma\over{\rm M}^3}$ в вертикальном положении (см.рис.). Если объем цилиндра V = 0,030 ${\rm M}^3$, то масса m цилиндра равна ... ${\rm K}\Gamma$.

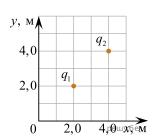


- **14.** Два маленьких шарика массами $m_1 = 24$ г и $m_2 = 12$ г подвешены на невесомых нерастяжимых нитях одинаковой длины l = 63 см так, что поверхности шариков соприкасаются. Первый шарик сначала отклонили таким образом, что нить составила с вертикалью угол $\alpha = 60^\circ$, а затем отпустили без начальной скорости. Если после неупругого столкновения шарики стали двигаться как единое целое и максимальная высота $h_{\rm max}$, на которую они поднялись, равна ... см.
- **15.** В сосуде объемом V=28,0 л находится газовая смесь, состоящая из гелия, количество вещества которого $\upsilon_1=2,80$ моль, и кислорода, количество вещества которого $\upsilon_2=0,400$ моль. Если абсолютная температура газовой смеси $T=295~{\rm K}$, то давление p этой смеси равно ... кПа.

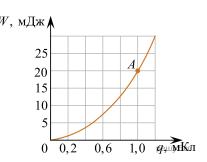
16. На рисунке приведён график зависимости температуры t тела ($c=1000~\rm{Дж/(кr\cdot ^{\circ}C)}$) от времени τ . t, $^{\circ}C$ Если к телу ежесекундно подводилось количество теплоты $|Q_0|=3,0~\rm{Дж}$, то масса m тела равна ... Γ .



17. На рисунке изображен график зависимости температуры $T_{\rm X}$ холодильника тепловой машины, работающей по циклу Карно, от времени τ . Если температура нагревателя тепловой машины $T_{\rm H}=287$ °C, то максимальный коэффициент полезного действия $\eta_{\rm max}$ машины был равен ... %.


- **18.** Источник радиоактивного излучения содержит изотоп стронция $^{90}_{38}Sr$ массой $m_0 = 96$ г, период полураспада которого $T_{1/2} = 29$ лет. Через промежуток времени $\Delta t = 87$ лет масса m нераспавшегося изотопа цезия будет равна ... г.
- **19.** Пять одинаковых ламп, соединённых последовательно, подключили к источнику постоянного тока с ЭДС $\varepsilon = 110~\mathrm{B}$ и внутренним сопротивлением $r = 2,0~\mathrm{Om}$. Если сопротивление одной лампы $R_1 = 4,0~\mathrm{Om}$, то напряжение U_1 на каждой лампе равно ... **B**.
- **20.** Электрон равномерно движется по окружности в однородном магнитном поле, модуль индукции которого B=10.0 мТл. Если радиус окружности R=2.5 мм, то кинетическая энергия $W_{\rm K}$ электрона равна ... э**B**.
- **21.** В идеальном LC-контуре происходят свободные электромагнитные колебания. Полная энергия контура W=58 мкДж. В момент времени, когда сила тока в катушке I=65 мА, напряжение на конденсаторе U=11 В. Если емкость конденсатора C=0,40 мк Φ то индуктивность L катушки равна ... м Γ н.

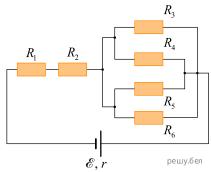
22. В электрической цепи, схема которой приведена на рисунке 1, ЭДС источника тока $\varepsilon=8~\mathrm{B}$, а его внутреннее сопротивление пренебрежимо мало. Сопротивление резистора R зависит от температуры T. Бесконечно большим оно оно становится при $T\geqslant 400~\mathrm{K}$ (см. рис. 2).



Удельная теплоемкость материала, из которого изготовлен резистор, $c=1000~\frac{\mathcal{J}_{\text{Ж}}}{\kappa\Gamma\cdot\mathrm{K}}$, масса резистора m=5,0 г. Если теплообмен резистора с окружающей средой отсутствует, а начальная температура резистора $T_0=280~\mathrm{K}$, то после замыкания ключа K через резистор протечет заряд q, равный ... Кл.

23. Электростатическое поле в вакууме создано двумя точечными зарядами $q_1 = 24$ нКл и $q_2 = -32$ нКл (см. рис.), лежащими в координатной плоскости xOy. Модуль напряжённости E результирующего электростатического поля в начале координат $\frac{B}{A}$.

24. График зависимости энергии электростатического поля W конденсатора от его заряда q представлен на рисунке. Точке A на графике соответствует напряжение U на конденсаторе, равное ... В.

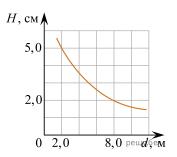

- **25.** Если за время $\Delta t = 30$ суток показания счётчика электроэнергии в квартире увеличились на $\Delta W = 31,7$ кВт · ч, то средняя мощность P, потребляемая электроприборами в квартире, равна ... Вт.
- **26.** Электрическая цепь состоит из источника тока, внутреннее сопротивление которого r=0,50 Ом, и резистора сопротивлением R=10 Ом. Если сила тока в цепи I=2,0 А, то ЭДС $\mathcal E$ источника тока равна ... В.

27.

На рисунке изображена схема электрической цепи, состоящей из источника тока и шести одинаковых резисторов

$$R_1 = R_2 = R_3 = R_4 = R_5 = R_6 = 10.0 \,\text{Om}.$$

В резисторе R_6 выделяется тепловая мощность $P_6=90,0$ Вт. Если внутреннее сопротивление источника тока r=4,00 Ом, то ЭДС $\mathcal E$ источника тока равна ... В.



- **28.** Электрон, модуль скорости которого $\upsilon=1,0\cdot 10^6~\frac{\rm M}{\rm C}$, движется по окружности в однородном магнитном поле. Если на электрон действует сила Лоренца, модуль которой $F_\Pi=6,4\cdot 10^{-15}~{\rm H}$, то модуль индукции B магнитного поля равен ... мТл.
- **29.** В идеальном колебательном контуре, состоящем из конденсатора и катушки, индуктивность которой L=0.20 мГн, происходят свободные электромагнитные колебания. Если циклическая частота электромагнитных колебаний $\omega=1.0\cdot 10^4 \frac{\mathrm{pag}}{\mathrm{c}}$, то ёмкость C конденсатора равна ... мкФ.

30.

График зависимости высоты H изображения карандаша, полученного с помощью тонкой рассеивающей линзы, от расстояния d между линзой и карандашом показан на рисунке. Модуль фокусного расстояния |F| рассеивающей линзы равен ... дм.

Примечание. Карандаш расположен перпендикулярно главной оптической оси линзы.

